\(\int \cos ^2(c+d x) \sqrt {a+b \sec (c+d x)} (A+C \sec ^2(c+d x)) \, dx\) [714]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 411 \[ \int \cos ^2(c+d x) \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {A (a-b) \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{4 a d}+\frac {\sqrt {a+b} (A b+2 a (A+4 C)) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{4 a d}+\frac {\sqrt {a+b} \left (A b^2-4 a^2 (A+2 C)\right ) \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{4 a^2 d}+\frac {A b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 a d}+\frac {A \cos (c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d} \]

[Out]

1/4*A*(a-b)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec
(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a/d+1/4*(A*b+2*a*(A+4*C))*cot(d*x+c)*EllipticF((a+b*sec(
d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(
a-b))^(1/2)/a/d+1/4*(A*b^2-4*a^2*(A+2*C))*cot(d*x+c)*EllipticPi((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a
+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/d+1/4*A*b*sin
(d*x+c)*(a+b*sec(d*x+c))^(1/2)/a/d+1/2*A*cos(d*x+c)*sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 0.78 (sec) , antiderivative size = 411, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4180, 4189, 4143, 4006, 3869, 3917, 4089} \[ \int \cos ^2(c+d x) \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {\sqrt {a+b} \left (A b^2-4 a^2 (A+2 C)\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{4 a^2 d}+\frac {\sqrt {a+b} (2 a (A+4 C)+A b) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{4 a d}+\frac {A (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{4 a d}+\frac {A b \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{4 a d}+\frac {A \sin (c+d x) \cos (c+d x) \sqrt {a+b \sec (c+d x)}}{2 d} \]

[In]

Int[Cos[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2),x]

[Out]

(A*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*S
qrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(4*a*d) + (Sqrt[a + b]*(A*b + 2*a
*(A + 4*C))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 -
 Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(4*a*d) + (Sqrt[a + b]*(A*b^2 - 4*a^2*(A + 2
*C))*Cot[c + d*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b
*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(4*a^2*d) + (A*b*Sqrt[a + b*Sec[c + d*x
]]*Sin[c + d*x])/(4*a*d) + (A*Cos[c + d*x]*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(2*d)

Rule 3869

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b
*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b)*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b
*Csc[c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4006

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4143

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)], x_Symbol] :> Int[(A + (B - C)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[Csc[e + f*x
]*((1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0
]

Rule 4180

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Dis
t[1/(d*n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[A*b*m - a*(C*n + A*(n + 1))*Csc[e +
f*x] - b*(C*n + A*(m + n + 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, C}, x] && NeQ[a^2 - b^2,
 0] && GtQ[m, 0] && LeQ[n, -1]

Rule 4189

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1
)*((d*Csc[e + f*x])^n/(a*f*n)), x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[
a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ
[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {A \cos (c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d}+\frac {1}{2} \int \frac {\cos (c+d x) \left (\frac {A b}{2}+a (A+2 C) \sec (c+d x)+\frac {1}{2} b (A+4 C) \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {A b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 a d}+\frac {A \cos (c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d}-\frac {\int \frac {\frac {1}{4} \left (A b^2-4 a^2 (A+2 C)\right )-\frac {1}{2} a b (A+4 C) \sec (c+d x)+\frac {1}{4} A b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{2 a} \\ & = \frac {A b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 a d}+\frac {A \cos (c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d}-\frac {\int \frac {\frac {1}{4} \left (A b^2-4 a^2 (A+2 C)\right )+\left (-\frac {A b^2}{4}-\frac {1}{2} a b (A+4 C)\right ) \sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{2 a}-\frac {\left (A b^2\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{8 a} \\ & = \frac {A (a-b) \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{4 a d}+\frac {A b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 a d}+\frac {A \cos (c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d}-\frac {\left (A b^2-4 a^2 (A+2 C)\right ) \int \frac {1}{\sqrt {a+b \sec (c+d x)}} \, dx}{8 a}+\frac {(b (A b+2 a (A+4 C))) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{8 a} \\ & = \frac {A (a-b) \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{4 a d}+\frac {\sqrt {a+b} (A b+2 a (A+4 C)) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{4 a d}+\frac {\sqrt {a+b} \left (A b^2-4 a^2 (A+2 C)\right ) \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{4 a^2 d}+\frac {A b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 a d}+\frac {A \cos (c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d} \\ \end{align*}

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(1084\) vs. \(2(411)=822\).

Time = 18.90 (sec) , antiderivative size = 1084, normalized size of antiderivative = 2.64 \[ \int \cos ^2(c+d x) \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {A \sqrt {a+b \sec (c+d x)} \sin (2 (c+d x))}{4 d}+\frac {\sqrt {a+b \sec (c+d x)} \left (-a A b \tan \left (\frac {1}{2} (c+d x)\right )-A b^2 \tan \left (\frac {1}{2} (c+d x)\right )+2 a A b \tan ^3\left (\frac {1}{2} (c+d x)\right )-a A b \tan ^5\left (\frac {1}{2} (c+d x)\right )+A b^2 \tan ^5\left (\frac {1}{2} (c+d x)\right )-8 a^2 A \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+2 A b^2 \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-16 a^2 C \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-8 a^2 A \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+2 A b^2 \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-16 a^2 C \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-A b (a+b) E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+2 a (2 a (A+2 C)-b (A+4 C)) \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}\right )}{4 a d \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)} \sqrt {\frac {1}{1-\tan ^2\left (\frac {1}{2} (c+d x)\right )}} \left (-1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )^{3/2} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{1+\tan ^2\left (\frac {1}{2} (c+d x)\right )}}} \]

[In]

Integrate[Cos[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2),x]

[Out]

(A*Sqrt[a + b*Sec[c + d*x]]*Sin[2*(c + d*x)])/(4*d) + (Sqrt[a + b*Sec[c + d*x]]*(-(a*A*b*Tan[(c + d*x)/2]) - A
*b^2*Tan[(c + d*x)/2] + 2*a*A*b*Tan[(c + d*x)/2]^3 - a*A*b*Tan[(c + d*x)/2]^5 + A*b^2*Tan[(c + d*x)/2]^5 - 8*a
^2*A*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Ta
n[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + 2*A*b^2*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(
a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - 16*
a^2*C*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*T
an[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - 8*a^2*A*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/
(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/
2]^2)/(a + b)] + 2*A*b^2*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 -
 Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - 16*a^2*C*EllipticPi
[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b -
a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - A*b*(a + b)*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b
)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c
 + d*x)/2]^2)/(a + b)] + 2*a*(2*a*(A + 2*C) - b*(A + 4*C))*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)
]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2
]^2)/(a + b)]))/(4*a*d*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*Sqrt[(1 - Tan[(c + d*x)/2]^2)^(-1)]*(-1 + T
an[(c + d*x)/2]^2)*(1 + Tan[(c + d*x)/2]^2)^(3/2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(
1 + Tan[(c + d*x)/2]^2)])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2476\) vs. \(2(370)=740\).

Time = 5.36 (sec) , antiderivative size = 2477, normalized size of antiderivative = 6.03

method result size
default \(\text {Expression too large to display}\) \(2477\)

[In]

int(cos(d*x+c)^2*(A+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/4/d/a*(-16*A*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(
a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*cos(d*x+c)+4*A*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b
))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^2*cos(d*x+c)+16*
C*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x
+c))/(cos(d*x+c)+1))^(1/2)*a^2*cos(d*x+c)-32*C*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*(cos(d
*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*cos(d*x+c)-2*A*(1/(a+b)*(b+a*c
os(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b
))^(1/2))*a*b-8*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(
cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b-A*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(
cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b+4*A*EllipticF(cot(d*x+c)-csc(d*x
+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2
*cos(d*x+c)^2-A*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b
)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^2*cos(d*x+c)^2-8*A*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b)
)^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*cos(d*x+c)^2+2*
A*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos
(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^2*cos(d*x+c)^2+8*C*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(
d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*cos(d*x+c)^2-16*C*EllipticPi(
cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos
(d*x+c)+1))^(1/2)*a^2*cos(d*x+c)^2+8*A*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d
*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*cos(d*x+c)-2*A*EllipticE(cot(d*x+c)-csc(d*
x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^
2*cos(d*x+c)-A*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)
*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)^2-2*A*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/
2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)+2*A*a^2*c
os(d*x+c)^3*sin(d*x+c)+2*A*a^2*cos(d*x+c)^2*sin(d*x+c)+A*b^2*cos(d*x+c)*sin(d*x+c)-8*C*(1/(a+b)*(b+a*cos(d*x+c
))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2)
)*a*b*cos(d*x+c)^2-4*A*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*Ellip
ticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b*cos(d*x+c)-16*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^
(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b*cos(d*x+c)-2*
A*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d
*x+c),((a-b)/(a+b))^(1/2))*a*b*cos(d*x+c)^2+4*A*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(c
os(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2+8*C*(cos(d*x+c)/(cos(d*x+c)+1))^(
1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2-
A*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d
*x+c),((a-b)/(a+b))^(1/2))*b^2-8*A*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))
^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*a^2+2*A*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(
a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))*b^2-16*C*
(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*
x+c),-1,((a-b)/(a+b))^(1/2))*a^2+3*A*a*b*cos(d*x+c)^2*sin(d*x+c)+2*A*a*b*cos(d*x+c)*sin(d*x+c))*(a+b*sec(d*x+c
))^(1/2)/(b+a*cos(d*x+c))/(cos(d*x+c)+1)

Fricas [F]

\[ \int \cos ^2(c+d x) \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \cos \left (d x + c\right )^{2} \,d x } \]

[In]

integrate(cos(d*x+c)^2*(A+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2*sec(d*x + c)^2 + A*cos(d*x + c)^2)*sqrt(b*sec(d*x + c) + a), x)

Sympy [F]

\[ \int \cos ^2(c+d x) \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int \left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \sqrt {a + b \sec {\left (c + d x \right )}} \cos ^{2}{\left (c + d x \right )}\, dx \]

[In]

integrate(cos(d*x+c)**2*(A+C*sec(d*x+c)**2)*(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)*sqrt(a + b*sec(c + d*x))*cos(c + d*x)**2, x)

Maxima [F]

\[ \int \cos ^2(c+d x) \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \cos \left (d x + c\right )^{2} \,d x } \]

[In]

integrate(cos(d*x+c)^2*(A+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sqrt(b*sec(d*x + c) + a)*cos(d*x + c)^2, x)

Giac [F]

\[ \int \cos ^2(c+d x) \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \cos \left (d x + c\right )^{2} \,d x } \]

[In]

integrate(cos(d*x+c)^2*(A+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sqrt(b*sec(d*x + c) + a)*cos(d*x + c)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \cos ^2(c+d x) \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int {\cos \left (c+d\,x\right )}^2\,\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}} \,d x \]

[In]

int(cos(c + d*x)^2*(A + C/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(1/2),x)

[Out]

int(cos(c + d*x)^2*(A + C/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(1/2), x)